Bayesian Nonparametric Clustering for Positive Definite Matrices
نویسندگان
چکیده
منابع مشابه
Riemannian Sparse Coding for Positive Definite Matrices
Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...
متن کاملDeterminantal inequalities for positive definite matrices
Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.
متن کاملDDtBe for Band Symmetric Positive Definite Matrices
We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...
متن کاملNonparametric Bayesian Clustering Ensembles
Forming consensus clusters from multiple input clusterings can improve accuracy and robustness. Current clustering ensemble methods require specifying the number of consensus clusters. A poor choice can lead to under or over fitting. This paper proposes a nonparametric Bayesian clustering ensemble (NBCE) method, which can discover the number of clusters in the consensus clustering. Three infere...
متن کاملDiscriminative Bayesian Nonparametric Clustering
We propose a general framework for discriminative Bayesian nonparametric clustering to promote the inter-discrimination among the learned clusters in a fully Bayesian nonparametric (BNP) manner. Our method combines existing BNP clustering and discriminative models by enforcing latent cluster indices to be consistent with the predicted labels resulted from probabilistic discriminative model. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2016
ISSN: 0162-8828,2160-9292
DOI: 10.1109/tpami.2015.2456903